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Abstract
We obtain the necessary and sufficient conditions for a two-component
(2+1)-dimensional system of hydrodynamic type to possess infinitely many
hydrodynamic reductions. These conditions are in involution, implying that
the systems in question are locally parametrized by 15 arbitrary constants. It is
proved that all such systems possess three conservation laws of hydrodynamic
type and, therefore, are symmetrizable in Godunov’s sense. Moreover, all such
systems are proved to possess a scalar pseudopotential which plays the role of
the ‘dispersionless Lax pair’. We demonstrate that the class of two-component
systems possessing a scalar pseudopotential is in fact identical with the class of
systems possessing infinitely many hydrodynamic reductions, thus establishing
the equivalence of the two possible definitions of integrability. Explicit linearly
degenerate examples are constructed.

PACS number: 02.30.Ik
Mathematics Subject Classification: 35L40, 35L65, 37K10

1. Introduction

The last years were marked by a remarkable progress in the theory of one-dimensional systems
of hydrodynamic type,

ut + A(u)ux = 0
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which naturally occur in applications in gas dynamics, hydrodynamics, chemical kinetics,
Whitham averaging procedure, differential geometry and topological field theory. We refer to
the reviews [6, 7, 33, 35] for further discussion and references. It has been observed that many
particularly important examples are diagonalizable, i.e. reducible to the Riemann invariant
form

Ri
t + vi(R)Ri

x = 0

where the characteristic speeds vi(R) satisfy the so-called semi-Hamiltonian property [35]
(also known as the ‘richness’ condition [33]),

∂k

(
∂jv

i

vj − vi

)
= ∂j

(
∂kv

i

vk − vi

)

for any triple i �= j �= k. Semi-Hamiltonian systems possess infinitely many conservation
laws and commuting flows of hydrodynamic type, and can be linearized by the generalized
hodograph transform [35]. Their analytic, differential-geometric and Hamiltonian aspects are
well-understood by now.

In contrast, not much was known about the integrability of multi-dimensional systems of
hydrodynamic type until recently. The main problem is that the standard symmetry approach
to the integrability based on the existence of higher symmetries (conservation laws) does not
seem to be effective in this context. In this paper we consider the problem of characterization
of (2+1)-dimensional integrable quasilinear systems

ut + A(u)ux + B(u)uy = 0 (1)

where t, x, y are independent variables, u is an m-component column vector and A(u), B(u)

are m × m matrices. We assume that the system is strictly hyperbolic, i.e. the generic matrix
of the linear family λIm + µA + B has m distinct real eigenvalues. Following our recent paper
[14], we call the system (1) integrable if it possesses ‘sufficiently many’ exact solutions of the
form u = u(R1, . . . , Rn) where the Riemann invariants R1, . . . , Rn solve a pair of commuting
diagonal systems

Ri
t = λi(R)Ri

y Ri
x = µi(R)Ri

y (2)

we emphasize that the number n of Riemann invariants is allowed to be arbitrary. Solutions
of this type, known as nonlinear interactions of n planar simple waves, were discussed in
multi-dimensional hydrodynamics and magnetohydrodynamics in a series of publications
[3, 4, 20, 32]. Later, they were investigated by Gibbons and Tsarev in the context of the
dispersionless KP hierarchy [15–18], (see also [28]), and the theory of Egorov’s integrable
hydrodynamic chains [30, 31]. The interpretation of n-wave interactions as symmetry
constraints was proposed in [2].

Particularly important examples of integrable multi-dimensional systems of
hydrodynamic type and dispersionless PDEs related to them arise in general relativity,
differential geometry (the theory of Einstein–Weyl spaces [8, 9]), in the context of the Dirichlet
boundary problem in multi-connected domains [27] and the Whitham averaging procedure (in
particular, the dispersionless limit) applied to (2+1)-dimensional solitonic PDEs [25, 26, 36].
All known integrable examples turn out to be conservative (see section 3 where we prove that
this is always the case, at least in the two-component situation) and, moreover, possess exactly
one ‘extra’ conservation law which is the necessary ingredient of the theory of weak solutions.
The property of integrability allows one to construct infinitely many (implicit) solutions and
investigate their breakdown and singularity structure. This makes the class of integrable multi-
dimensional quasilinear systems a possible venue for developing and testing the mathematical
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theory (existence, uniqueness, weak solutions, etc) of multidimensional conservation laws
which, currently, remain terra incognita [5].

We recall (see [35]) that the requirement of the commutativity of the flows (2) is equivalent
to the following restrictions on their characteristic speeds:

∂jλ
i

λj − λi
= ∂jµ

i

µj − µi
i �= j ∂j = ∂/∂Rj (3)

(no summation!). Once these conditions are met, the general solution of (2) is given by the
implicit ‘generalized hodograph’ formula [35]

vi(R) = y + λi(R)t + µi(R)x i = 1, . . . , n (4)

where vi(R) are characteristic speeds of the general flow commuting with (2), i.e. the general
solution of the linear system

∂jv
i

vj − vi
= ∂jλ

i

λj − λi
= ∂jµ

i

µj − µi
. (5)

Substituting u(R1, . . . , Rn) into (1) and using (2), one readily arrives at the equations

(λiIm + µiA + B)∂iu = 0 i = 1, . . . , n (6)

implying that λi and µi satisfy the dispersion relation

det(λIm + µA + B) = 0. (7)

Thus, the construction of nonlinear interactions of n planar simple waves reduces to solving
equations (3), (6) for u(R), λi(R), µi(R) as functions of the Riemann invariants R1, . . . , Rn.
For n � 3 these equations are highly overdetermined and do not possess solutions in general.
As demonstrated in [14], the requirement of the existence of nontrivial three-component
reductions is very restrictive and implies, in particular, the existence of n-component reductions
for arbitrary n. We give the following

Definition. System (1) is said to be integrable if it possesses n-component reductions of the
form (2) parametrized by n arbitrary functions of a single variable.

We refer to [14] for the motivation and supporting examples.

Remark 1. In the case of linear systems (1), i.e. when both A and B are constant matrices,
equations (3) and (7) imply λi

j = µi
j = 0, so that λi = λi(Ri), µi = µi(Ri). Moreover,

as follows from (6), ∂iu = ξi(R
i) where ξi(R

i) is the right eigenvector of the matrix
λiIm + µiA + B. With the particular choice λi = const, µi = const, ξi = const
the corresponding solutions represent the standard linear superposition of simple waves,
u = ∑

f i(x + λit + µiy)ξi .

In section 2 we derive the integrability conditions for the two-component system (1)
assuming that the matrix A is written in the diagonal form,(

v

w

)
t

+

(
a 0
0 b

)(
v

w

)
x

+

(
p q

r s

) (
v

w

)
y

= 0 (8)

such diagonalization is always possible in the two-component situation. These conditions
constitute a complicated overdetermined system (13)–(17) of second-order PDEs for
a, b, p, q, r, s as functions of v,w, which is in involution; a simple analysis shows that the
class of integrable two-component systems is locally parametrized by 15 arbitrary constants.
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Remark 2. In principle, the method described in section 2 allows one to derive the integrability
conditions in arbitrary coordinates; however, the formulae become extremely complicated. We
were not able to find an invariant ‘tensor’ formulation of the integrability conditions so far.

We prove (theorem 1 of section 3) that an arbitrary two-component system (8) satisfying
the integrability conditions possesses three conservation laws of hydrodynamic type and, thus,
is symmetrizable in Godunov’s sense [19].

In section 4 we demonstrate that all two-component integrable systems possess scalar
pseudopotentials of the form

ψt = f (ψy, v,w) ψx = g(ψy, v,w).

According to the philosophy of [36], this indicates that (2+1)-dimensional integrable systems
of hydrodynamic type can be obtained as dispersionless limits from the appropriate (2+1)-
dimensional integrable soliton equations (possibly, nonlocal, differential-difference, etc). The
corresponding pseudopotentials are quasiclassical limits of the associated linear Lax operators.
The construction of the ‘solitonic prototype’ was sketched in the case when the dependence
of f and g on ψy is rational (trigonometric), leading to differential (difference) soliton
equations. We prove (theorem 2 of section 4) that the requirement of the existence of a
scalar pseudopotential is, in fact, necessary and sufficient for the existence of the infinity
of hydrodynamic reductions. This establishes the equivalence of the two approaches to
the integrability of (2+1)-dimensional hydrodynamic-type systems. The quasi-classical ∂̄-
dressing approach to the solution of (2+1)-dimensional dispersionless systems based on
the pseudopotentials of the above type was proposed in the series of recent publications
[1, 21–24]. The interpretation of exact solutions describing nonlinear interactions of planar
simple waves as symmetry constraints was outlined in the recent publication [2].

Some explicit examples where the matrix A is linearly degenerate (i.e., av = bw = 0) are
discussed in section 5. These include a remarkable case where both matrices A and B, as well
as arbitrary linear combinations thereof, are linearly degenerate.

We conclude this introduction by listing some known examples of two-component
integrable systems written in the form (8).

Example 1. Let us consider the system

vt +
1

v + w
vx − 1

v + w
wy = 0 wt − 1

v + w
wx +

1

v + w
vy = 0

here a = 1
v + w

, b = − 1
v + w

, etc. Introducing the variables m = v + w, n = v − w, one can
rewrite these equations in the form

(∂x + ∂y)n + 1
2∂tm

2 = 0 ∂tn + (∂x − ∂y) ln m = 0

leading, upon cross-differentiation, to the Boyer–Finley equation for m2 = (v + w)2

∂2
t m2 = (

∂2
x − ∂2

y

)
ln m2.

The Boyer–Finley equation is known to be integrable, its hydrodynamic reductions were
investigated, e.g., in [12].

Example 2. A closely related example is

vt +
1

v + w
vx +

1

v + w

√
v

w
wy = 0 wt − 1

v + w
wx +

1

v + w

√
w

v
vy = 0.

Note that the characteristic speeds a and b are the same as in the previous example! In the
new variables m = v − w, n = 2

√
vw, this system reduces to

mt +
mmx + nnx

m2 + n2
+

mny − nmy

m2 + n2
= 0 nt +

nmx − mnx

m2 + n2
+

mmy + nny

m2 + n2
= 0.
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In this form it has appeared in a recent paper [14]. It was demonstrated, in particular, that the
expression ρ2 = m2 + n2 = (v + w)2 satisfies another version of the Boyer–Finley equation,

∂2
t ρ2 = (

∂2
x + ∂2

y

)
ln ρ2

corresponding to a different signature.

Example 3. Here both matrices A and B, as well as arbitrary linear combinations thereof, are
linearly degenerate:

vt + wvx +
1

w − v
(vy + wy) = 0 wt + vwx +

1

v − w
(vy + wy) = 0.

Introducing the variables m = v + w, n = vw, one can rewrite these equations as

mt + nx = 0 nt + mnx − nmx + my = 0.

This system, which is descriptive of hyperCR Einstein–Weyl structures [9], was thoroughly
investigated in [30] (see also [29, 34]).

Example 4. We also looked at the integrable systems (8) whose chararacteristic speeds a and
b are of the form a = v + w + εv, b = v + w + εw, ε = const. The analysis showed that
the only possible values for ε are ε = −1 and ε = −2. In the first case the matrix A is
linearly degenerate, see section 4 for the general form of the corresponding matrix B. In the
case ε = −2 we obtained the system

vt + (v − w)vx + wy = 0 wt + (w − v)wx + vy = 0

which is yet another first-order form of the Boyer–Finley equation; indeed, this system reduces
to that from example 1 after a simple change of variables w → −w, t ↔ x.

2. Derivation of the integrability conditions

The integrability conditions can be obtained as follows. Looking for reductions of the system
(8) in the form v = v(R1, . . . , Rn), w = w(R1, . . . , Rn) where the Riemann invariants satisfy
equations (2), and substituting into (8), one arrives at

(λi + aµi + p)∂iv + q∂iw = 0 r∂iv + (λi + bµi + s)∂iw = 0

(no summation!) so that λi and µi satisfy the dispersion relation

(λi + aµi + p)(λi + bµi + s) = qr.

We assume that the dispersion relation defines an irreducible conic, i.e. a �= b, r �= 0, q �= 0.
Note that these conditions are equivalent to the requirement rk[A,B] = 2. Setting
∂iv = ϕi∂iw one obtains the following expressions for λi and µi in terms of ϕi ,

λi = ar(ϕi)2 + (as − bp)ϕi − bq

(b − a)ϕi
µi = r(ϕi)2 + (s − p)ϕi − q

(a − b)ϕi
(9)

which define a rational parametrization of the dispersion relation. The compatibility conditions
of the equations ∂iv = ϕi∂iw imply

∂i∂jw = ∂jϕ
i

ϕj − ϕi
∂iw +

∂iϕ
j

ϕi − ϕj
∂jw (10)

while the commutativity conditions (3) lead to the expressions for ∂jϕ
i, (i �= j), in the form

∂jϕ
i = (· · ·)∂jw. (11)
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Here dots denote a rational expression in ϕi, ϕj whose coefficients depend on a, b, p, q, r, s

and the first derivatives thereof. We do not write them out explicitly due to their complexity.
To manipulate with these expressions we used symbolic computations (Mathematica 5.0).
Substituting the expressions for ∂jϕ

i into (10) one obtains

∂i∂jw = (· · ·)∂iw∂jw (12)

where, again, dots denote a rational expression in ϕi, ϕj . One can see that the compatibility
conditions of equations (11), i.e. ∂k∂jϕ

i − ∂j ∂kϕ
i = 0 are of the form P∂jw∂kw = 0,

where P is a complicated rational expression in ϕi, ϕj , ϕk whose coefficients depend on
partial derivatives of a, b, p, q, r, s up to second order (to obtain the integrability conditions
it suffices to consider three-component reductions setting i = 1, j = 2, k = 3). Requiring
that P vanishes identically we obtain the expressions for all second partial derivatives of the
potentials a, b, p, s, as well as three relations among the second partial derivatives of q and r.
Similarly, the compatibility conditions of equations (12), i.e. ∂k(∂i∂jw) − ∂j (∂i∂kw) = 0 take
the form Q∂iw∂jw∂kw = 0 where, again, Q is a rational expression in ϕi, ϕj , ϕk . Equating
Q to zero, one obtains (modulo conditions obtained in the previous step) the expressions for
mixed partial derivatives qvw and rvw. The resulting set of the integrability conditions looks
as follows.

Equations for a

avv = qavbv + 2qa2
v + (s − p)avaw − ra2

w

(a − b)q
+

avrv

r
+

2avpw − awpv

q

avw = av

aw + bw

a − b
+ av

(
qw

q
+

rw

r

)
(13)

aww = qavbv + (s − p)avbw + ra2
w

(a − b)r
+

avsw

r
+

awqw

q
.

Equations for b

bvv = rawbw + (p − s)avbw + qb2
v

(b − a)q
+

bwpv

q
+

bvrv

r

bvw = bw

av + bv

b − a
+ bw

(
qv

q
+

rv

r

)
(14)

bww = rawbw + 2rb2
w + (p − s)bvbw − qb2

v

(b − a)r
+

bwqw

q
+

2bwsv − bvsw

r
.

Equations for p

pvv = 2
r(avbw − awbv) + (s − p)avbv

(a − b)2
+

rvpv

r
+

pvpw

q

+
r
q
(2qvaw − 2avqw + awpw) − bvpv + 2rvaw − 2av(sv + pv + rw) + p−s

q
(2pvaw − avpw)

b − a

pvw = 2(s − p)
avbw

(a − b)2
− bwpv + (2sw + pw)av

b − a
+ pv

(
qw

q
+

rw

r

)

pww = 2
q(awbv − avbw) + (s − p)awbw

(a − b)2
+

(p − s)bwpv − qbvpv − 2rswaw − rawpw

(b − a)r

+
pvsw

r
+

qwpw

q
.

(15)
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Equations for s

svv = 2
r(awbv − avbw) + (p − s)avbv

(a − b)2
+

(s − p)avsw − rawsw − 2qpvbv − qbvsv

(a − b)q

+
pvsw

q
+

rvsv

r

svw = 2(p − s)
avbw

(a − b)2
− avsw + (2pv + sv)bw

a − b
+ sw

(
qv

q
+

rv

r

)

sww = 2
q(avbw − awbv) + (p − s)awbw

(a − b)2
+

qwsw

q
+

svsw

r

+
q

r
(2rwbv − 2bwrv + bvsv) − awsw + 2qwbv − 2bw(pw + sw + qv) + s−p

r
(2swbv − bwsv)

a − b
.

(16)

Equations for q and r

qrvv + rqvv = 2(p − s)
(p − s)awbw + q(avbw − awbv)

(a − b)2
+ q

rv

r

qbv + (s − p)bw

a − b

+ (s − p)
2awsw + 2bwpw + bwqv

a − b
+ r

(aw − 2bw)qw

a − b

+ q
awrw + bv(2pw + 2sw + qv) − 2bw(rw + pv + sv)

a − b

+
r

q
q2

w +
q

r
swrv − qwrw + sw(2pw + qv)

qvw = (s − p)
qavbv + (s − p)avbw + rawbw

r(a − b)2
+

qvqw

q
+

pvsw

r

+
av(rqw + qrw) + (s − p)(avsw + bwpv) + rawsw + qpvbv

r(a − b)
(17)

rvw = (p − s)
rawbw + (p − s)avbw + qavbv

q(a − b)2
+

rvrw

r
+

pvsw

q

+
bw(rqv + qrv) + (p − s)(avsw + bwpv) + rawsw + qpvbv

q(b − a)

qrww + rqww = 2(s − p)
(s − p)avbv + r(avbw − awbv)

(a − b)2
+ r

qw

q

raw + (p − s)av

b − a

+ (p − s)
2bvpv + 2avsv + avrw

b − a
+ q

(bv − 2av)rv

b − a

+ r
bvqv + aw(2sv + 2pv + rw) − 2av(qv + sw + pw)

b − a

+
q

r
r2
v +

r

q
pvqw − rvqv + pv(2sv + rw).

Note that there are only two relations among the second derivatives qvv, rvv, qww, rww. These
formulae are completely symmetric under the identification v ↔ w, a ↔ b, p ↔ s, q ↔ r .
It can be verified that equations (13)–(17) are in involution and their general solution depends,
modulo the coordinate transformations v = ϕ(ṽ), w = ψ(w̃), on 15 arbitrary constants.
Thus, we have established the existence of a 15-parameter family of integrable systems of the
form (8).

Once the integrability conditions (13)–(17) are satisfied, the general solution of the
involutive system (11), (12) for ϕi and w will depend on 2n arbitrary functions of a single
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variable (indeed, one can formulate the Goursat problem for this system specifying ϕi along
the Ri-coordinate line and specifying the restriction of w to each of the coordinate lines). This
has to be considered up to reparametrizations of the form Ri → f i(Ri). Thus, the general
n-component reduction depends on n essential functions of a single variable. This justifies
the definition of integrability given in the introduction. The system (11), (12) governing
n-component reductions will be called the generalized Gibbons–Tsarev system (it was derived
by Gibbons and Tsarev [17] in the context of the dispersionless KP equation).

Remark. Rewriting equations (13)2 and (14)2 in the form d ln(qr) = �, where

� =
(

bvw

bw

+
av + bv

a − b

)
dv +

(
avw

av

+
aw + bw

b − a

)
dw

(we assume av �= 0, bw �= 0), one obtains the condition d� = 0 which involves the matrix A

only. Obviously, the same condition holds for an arbitrary matrix in the linear pencil αA + βB

(written in the diagonal form). The object d� first appeared in [10, 11] as one of the basic
reciprocal invariants of two-component hydrodynamic-type systems.

3. Conservation laws

In this section we prove the following

Theorem 1. Any two-component (2+1)-dimensional system of hydrodynamic type which
passes the integrability test necessarily possesses three conservation laws of hydrodynamic
type and, hence, is symmetrizable in Godunov’s sense [19].

This explains the observation made in our recent publication [14]. To obtain the proof we
first transform the system into the form (8). Looking for conservation laws in the form

h(v,w)t + g(v,w)x + f (v,w)y = 0

one readily obtains

gv = ahv gw = bhw

and

fv = phv + rhw fw = qhv + shw.

The consistency condition gvw = gwv implies

hvw = aw

b − a
hv +

bv

a − b
hw (18)

while the consistency condition fvw = fwv results in

pwhv + p

(
aw

b − a
hv +

bv

a − b
hw

)
+ rwhw + rhww

= svhw + s

(
aw

b − a
hv +

bv

a − b
hw

)
+ qvhv + qhvv.

The last formula can be rewritten in the form

hvv = 1

q

(
s − p

a − b
aw + pw − qv

)
hv +

l

q
(19)

hww = 1

r

(
s − p

a − b
bv + sv − rw

)
hw +

l

r
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where the equations for the auxiliary variable l can be obtained from the compatibility
conditions (hvv)w = (hvw)v and (hww)v = (hvw)w:

lv =
(

rv

r
+

bv

a − b

)
l − 2bvpv(b − a) + 2avbv(p − s) + 4rawbv − ravbw

(a − b)2
hw

−
{(

avbvq + awbwr + (a − b)raw

qw

q
+ (awbv − avbw)(p − s)

+ (b − a)aw(sv − rw) + (a − b)avsw − ra2
w

)/
(a − b)2

}
hv

(20)

lw =
(

qw

q
+

aw

b − a

)
l − 2awsw(a − b) + 2awbw(s − p) + 4qawbv − qavbw

(a − b)2
hv

−
{(

avbvq + awbwr + (b − a)qbv

rv

r
+ (awbv − avbw)(s − p)

+ (a − b)bv(pw − qv) + (b − a)bwpv − qb2
v

)/
(a − b)2

}
hw.

One can verify that the compatibility conditions lvw = lwv are satisfied identically by virtue
of (13)–(17). Thus, the system of equations (18)–(20) for conservation laws is in involution
and its solution space is three-dimensional.

4. Pseudopotentials

In this section we prove that any integrable system (8) possesses a scalar pseudopotential
depending, in some cases, on the auxiliary parameter λ. We begin with some supporting
examples.

Example 5. The linearly degenerate system [9, 30, 34]

mt + nx = 0 nt + mnx − nmx + my = 0

from example 3 possesses the pseudopotential

ψt = −(λ + m)ψx ψy = (λ2 + λm + n)ψx.

We emphasize that the parameter λ is essential here, allowing one to recover the full system
for m, n from the consistency condition ψty = ψyt .

Example 6. The dispersionless KP equation, (ut − uux)x = uyy , rewritten in two-component
form

uy = wx wy = ut − uux

possesses the pseudopotential

ψt = 1
3ψ3

x + uψx + w ψy = 1
2ψ2

x + u

see [36].

Example 7. The Boyer–Finley equation, utt = (ln u)xy , rewritten in two-component form

ut = wy wt = ux/u

possesses the pseudopotential

ψt = ln u − ln ψy ψx = w − u

ψy

.
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Further examples of integrable (2+1)-dimensional equations possessing pseudopotentials of
the above type can be found in [21, 31, 36]. It is a remarkable fact that in all examples
constructed in [31] the existence of such pseudopotentials manifests the equivalence of
the corresponding (2+1)-dimensional system to a pair of commuting (1+1)-dimensional
hydrodynamic chains.

In the general case of system (8) we look for a pseudopotential in the form

ψt = f (ψy, v,w) ψx = g(ψy, v,w). (21)

Writing out the consistency condition ψtx = ψxt , expressing vt , wt by virtue of (8) and
equating to zero coefficients at vx, vy, wx,wy , one arrives at the following expressions for the
first derivatives fv, fw, fξ and gξ (we adopt the notation ξ ≡ ψy):

fv = −agv fw = −bgw
(22)

fξ =
b
(
p + r

gw

gv

) − a
(
s + q

gv

gw

)
a − b

and

gξ =
s + q

gv

gw
− p − r

gw

gv

a − b
(23)

The consistency conditions of equations (22) imply the following expressions for the second
partial derivatives gvw, gvv, gww:

gvw = aw

b − a
gv +

bv

a − b
gw

gvv = gv

[
g2

w(r(bv − av) + (a − b)rv) + gvgw((a − b)pv + (s − p)av − raw) + qavg
2
v

]
(a − b)rg2

w

gww = gw

[
g2

v(q(aw − bw) + (b − a)qw) + gvgw((b − a)sw + (p − s)bw − qbv) + rbwg2
w

]
(b − a)qg2

v

.

(24)

The compatibility conditions of equations (23), (24) for g, namely, the conditions gξvv =
gvvξ , gξvw = gvwξ , etc, are of the form P(gv, gw) = 0, where P denotes a rational expression
in gv, gw whose coefficients are functions of a, b, p, q, r, s and their partial derivatives up
to the second order. Equating all these expressions to zero (they are required to be zero
identically in gv, gw), one obtains the set of conditions which are necessary and sufficient for
the existence of pseudopotentials of the form (21). It is a truly remarkable fact that these
conditions identically coincide with the integrability conditions (13)–(17). Thus, any system
satisfying the integrability conditions (13)–(17) possesses pseudopotentials of the form (21)
parametrized by four arbitrary integration constants, indeed, one can arbitrarily prescribe the
values of g, gv, gw and f at any initial point; the rest is completely determined by the involutive
system (23), (24) and (22). Note, however, that the transformation ψ → λψ + µx + νy + ηt

allows one to eliminate all these constants in the general situation (see example 5 where one
of these constants survives and is essential).

We have established the following

Theorem 2. The class of two-component (2+1)-dimensional systems of hydrodynamic type
possessing infinitely many hydrodynamic reductions coincides with the class of systems
possessing a scalar pseudopotential of the form (21).
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Remark. The pseudopotential (21) readily implies a pseudopotential for the corresponding
generalized Gibbons–Tsarev system (11), (12). Indeed, differentiating equations (21) by y

and introducing ξ = ψy , one obtains

ξt = ∂yf (ξ, v,w) = fξ ξy + fvvy + fwwy ξx = ∂yg(ξ, v,w) = gξ ξy + gvvy + gwwy.

Assuming now that ξ, v,w are functions of n Riemann invariants R1, . . . , Rn which satisfy
equations (2), one arrives at

ξiλ
i = fξ ξi + fvvi + fwwi ξiµ

i = gξ ξi + gvvi + gwwi.

Substituting here vi = ϕiwi , expressions (9) for λi and µi in terms of ϕi (see section 2), and
taking into account formulae (22), (23), one ends up with

ξi = (a − b)ϕi

rϕi/gv − q/gw

wi. (25)

Equations (25) define a scalar pseudopotential for the generalized Gibbons–Tsarev system
(11), (12), i.e., the consistency conditions of (25) imply equations (11), (12).

5. Examples

Equations (13)–(17) are particularly convenient to analyse when the matrix A is given (we
emphasize that a and b cannot be arbitrary). The corresponding matrix B is then defined up to
a natural equivalence

B → µB + νA + ηI2

generated by a linear change of the independent variables in equations (8): t̃ = t, x̃ = x, ỹ =
µy + νx + ηt ; here µ, ν, η are arbitrary constants. Moreover, one has a freedom of the
coordinate transformations v = ϕ(ṽ), w = ψ(w̃) preserving the diagonal form of A. These
transformations do not change a, b, p, s and transform q and r according to the formulae

q̃ = q
ψ ′(w̃)

ϕ′(ṽ)
r̃ = r

ϕ′(ṽ)

ψ ′(w̃)
.

The classification results presented below are carried out up to this natural equivalence.
In this section we concentrate on the case when the matrix A is linearly degenerate, i.e.,

av = bw = 0. There are three essentially different cases to consider:

Case 1 : A =
(

w 0
0 v

)
Case 2 : A =

(
α 0
0 β

)
Case 3 : A =

(
w 0
0 β

)

here α and β are arbitrary constants. Note that without any loss of generality one can set
α = 1, β = 0. Below we restrict ourselves to the symmetric cases 1 and 2, and show that
there is a multi-parameter freedom in the formulae for B.

Case 1. Substituting a = w, b = v into the integrability conditions (13)–(17), one obtains
the overdetermined system for p, q, r, s which can be explicitly integrated (the integration is
fairly straightforward so that we skip the details). Up to the equivalence mentioned above we
have

p = f (w)

w − v
− αw2 q = f (v)

w − v
r = f (w)

v − w
s = f (v)

v − w
− αv2

where f is a cubic polynomial, f (z) = αz3 + βz2 + γ z + δ, and α, β, γ, δ are arbitrary
constants. A remarkable property of this example is that any matrix in the linear pencil
B + µA is also linearly degenerate. In the particular case α = β = γ = 0, δ = 1 one has
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vt + wvx +
1

w − v
(vy + wy) = 0 wt + vwx +

1

v − w
(vy + wy) = 0.

This system possesses three conservation laws

(v + w)t + (vw)x = 0

(v2 + vw + w2)t + (vw(v + w))x − (v + w)y = 0

and

(v3 + v2w + vw2 + w3)t + (vw(v2 + vw + w2))x − (v + w)2
y = 0.

Introducing the variables m = v + w, n = vw, one can rewrite this system as

mt + nx = 0 nt + mnx − nmx + my = 0.

In this form it was thoroughly investigated in [30] (see also [29]).

Case 2. Here a and b are constants, a �= b. The corresponding equations for p, q, r, s take
the form

pvv = pv

(
pw

q
+

rv

r

)
pvw = pv

(
qw

q
+

rw

r

)
pww = pwqw

q
+

swpv

r

svv = svrv

r
+

swpv

q
svw = sw

(
qv

q
+

rv

r

)
sww = sw

(
sv

r
+

qw

q

)

qrvv + rqvv = qr2
v

r
− qvrv + pv(2sv + rw) +

rqwpv

q

qrww + rqww = rq2
w

q
− qwrw + sw(2pw + qv) +

qrvsw

r

qvw = qvqw

q
+

pvsw

r
rvw = rvrw

r
+

pvsw

q
.

These equations imply, in particular, that (pv/qr)w = 0, (sw/qr)v = 0, so that, after the
appropriate reparametrization v → f (v), w → g(w), one can set pv = sw = qr (provided
pv �= 0, sw �= 0). With this simplification, the above equations reduce to

pv = qr pw = qv sv = rw sw = qr

along with the following overdetermined system for q and r:

qvv = (qr)w qvw = qvqw

q
+ q2r qww = q2

w

q
+ 2qqv − qwrw

r
(26)

rww = (qr)v rvw = rvrw

r
+ qr2 rvv = r2

v

r
+ 2rrw − qvrv

q
.

This system is in involution with the general solution depending on six arbitrary constants.
Equations for qvw and rvw yield the Liouville equation for ln(qr) and the linear wave equation
for ln(q/r), implying the following functional ansatz for these variables:

q = f ′(v)1/2g′(w)1/2

f (v) + g(w)

m(f (v))

n(g(w))
r = f ′(v)1/2g′(w)1/2

f (v) + g(w)

n(g(w))

m(f (v))
. (27)



Characterization of two-component (2+1)-dimensional integrable systems 2961

Setting

(f ′)3/2 = P(f ) (g′)3/2 = Q(g) (28)

and substituting (27) into the remaining equations (26), we obtain the following four functional-
differential equations for P(f ),Q(g),m(f ), n(g):

[P ′′(f + g)2 − 4P ′(f + g) + 6P ]m

+ [4P ′(f + g)2 − 6P(f + g)]m′ + 3P(f + g)2m′′ = [2Q′(f + g) − 6Q]n

[Q′′(f + g)2 − 4Q′(f + g) + 6Q]n

+ [4Q′(f + g)2 − 6Q(f + g)]n′ + 3Q(f + g)2n′′ = [2P ′(f + g) − 6P ]m

Pm′ + Q′(f + g)n′ + Q
[
(f + g)n′′ − n′] = 0

Qn′ + P ′(f + g)m′ + P [(f + g)m′′ − m′] = 0.

These equations yield

P(f ) = αf 3 + βf 2 + γf + δ

m(f )
Q(g) = αg3 − βg2 + γg − δ

n(g)

where

(ln m)′ = Af

αf 3 + βf 2 + γf + δ
(ln n)′ = − Ag

αg3 − βg2 + γg − δ
.

Here α, β, γ, δ and A are arbitrary constants. If A = 0 and m = n = 1, then both P and Q are
cubic polynomials in f and g, implying that equations for f and g can be solved in terms of
elliptic functions (this case was considered in [14]).

6. Conclusion

In this paper we gave the characterization of two-component (2+1)-dimensional integrable
systems of hydrodynamic type, showing that

• there exists a 15-parameter family of such systems;

• all integrable systems are symmetrizable in Godunov’s sense;

• the system is integrable iff it possesses a scalar pseudopotential.

We have also constructed nontrivial explicit examples of integrable two-component (2+1)-
dimensional systems of hydrodynamic type for which one of the matrices of the system is
linearly degenerate.

The important problem remaining is to clarify the differential geometry of the full
set of integrability conditions (13)–(17) expressing them in invariant form in terms of the
corresponding matrices A and B.
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